torch.logdet¶
-
torch.logdet(input) → Tensor¶ Calculates log determinant of a square matrix or batches of square matrices.
Note
Result is
-infifinputhas zero log determinant, and isnanifinputhas negative determinant.Note
Backward through
logdet()internally uses SVD results wheninputis not invertible. In this case, double backward throughlogdet()will be unstable in wheninputdoesn’t have distinct singular values. Seesvd()for details.- Parameters
input (Tensor) – the input tensor of size
(*, n, n)where*is zero or more batch dimensions.
Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) tensor(0.2611) >>> torch.logdet(A) tensor(-1.3430) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386]) >>> A.det().log() tensor([ 0.1815, -0.8917, -0.3031])