torch.det¶
-
torch.det(input) → Tensor¶ Calculates determinant of a square matrix or batches of square matrices.
Note
Backward through
det()internally uses SVD results wheninputis not invertible. In this case, double backward throughdet()will be unstable in wheninputdoesn’t have distinct singular values. Seesvd()for details.- Parameters
input (Tensor) – the input tensor of size
(*, n, n)where*is zero or more batch dimensions.
Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) tensor(3.7641) >>> A = torch.randn(3, 2, 2) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386])