torch.where¶
-
torch.
where
(condition, x, y) → Tensor¶ Return a tensor of elements selected from either
x
ory
, depending oncondition
.The operation is defined as:
Note
The tensors
condition
,x
,y
must be broadcastable.Note
Currently valid scalar and tensor combination are 1. Scalar of floating dtype and torch.double 2. Scalar of integral dtype and torch.long 3. Scalar of complex dtype and torch.complex128
- Parameters
- Returns
A tensor of shape equal to the broadcasted shape of
condition
,x
,y
- Return type
Example:
>>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64)
-
torch.
where
(condition) → tuple of LongTensor¶
torch.where(condition)
is identical totorch.nonzero(condition, as_tuple=True)
.Note
See also
torch.nonzero()
.