torch.nn.utils.prune.custom_from_mask¶
- 
torch.nn.utils.prune.custom_from_mask(module, name, mask)[source]¶
- Prunes tensor corresponding to parameter called - namein- moduleby applying the pre-computed mask in- mask. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called- name+'_mask'corresponding to the binary mask applied to the parameter- nameby the pruning method. 2) replacing the parameter- nameby its pruned version, while the original (unpruned) parameter is stored in a new parameter named- name+'_orig'.- Parameters
- Returns
- modified (i.e. pruned) version of the input module 
- Return type
- module (nn.Module) 
 - Examples - >>> m = prune.custom_from_mask( nn.Linear(5, 3), name='bias', mask=torch.Tensor([0, 1, 0]) ) >>> print(m.bias_mask) tensor([0., 1., 0.])