torch.nn.utils.prune.identity¶
- 
torch.nn.utils.prune.identity(module, name)[source]¶
- Applies pruning reparametrization to the tensor corresponding to the parameter called - namein- modulewithout actually pruning any units. Modifies module in place (and also return the modified module) by: 1) adding a named buffer called- name+'_mask'corresponding to the binary mask applied to the parameter- nameby the pruning method. 2) replacing the parameter- nameby its pruned version, while the original (unpruned) parameter is stored in a new parameter named- name+'_orig'.- Note - The mask is a tensor of ones. - Parameters
- Returns
- modified (i.e. pruned) version of the input module 
- Return type
- module (nn.Module) 
 - Examples - >>> m = prune.identity(nn.Linear(2, 3), 'bias') >>> print(m.bias_mask) tensor([1., 1., 1.])