UpsamplingBilinear2d¶
- 
class torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None)[source]¶
- Applies a 2D bilinear upsampling to an input signal composed of several input channels. - To specify the scale, it takes either the - sizeor the- scale_factoras it’s constructor argument.- When - sizeis given, it is the output size of the image (h, w).- Parameters
 - Warning - This class is deprecated in favor of - interpolate(). It is equivalent to- nn.functional.interpolate(..., mode='bilinear', align_corners=True).- Shape:
- Input: 
- Output: where 
 
 - Examples: - >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) >>> input tensor([[[[ 1., 2.], [ 3., 4.]]]]) >>> m = nn.UpsamplingBilinear2d(scale_factor=2) >>> m(input) tensor([[[[ 1.0000, 1.3333, 1.6667, 2.0000], [ 1.6667, 2.0000, 2.3333, 2.6667], [ 2.3333, 2.6667, 3.0000, 3.3333], [ 3.0000, 3.3333, 3.6667, 4.0000]]]])