RNNCell¶
- 
class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh')[source]¶
- An Elman RNN cell with tanh or ReLU non-linearity. - If - nonlinearityis ‘relu’, then ReLU is used in place of tanh.- Parameters
- input_size – The number of expected features in the input x 
- hidden_size – The number of features in the hidden state h 
- bias – If - False, then the layer does not use bias weights b_ih and b_hh. Default:- True
- nonlinearity – The non-linearity to use. Can be either - 'tanh'or- 'relu'. Default:- 'tanh'
 
 - Inputs: input, hidden
- input of shape (batch, input_size): tensor containing input features 
- hidden of shape (batch, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. 
 
- Outputs: h’
- h’ of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch 
 
- Shape:
- Input1: tensor containing input features where = input_size 
- Input2: tensor containing the initial hidden state for each element in the batch where = hidden_size Defaults to zero if not provided. 
- Output: tensor containing the next hidden state for each element in the batch 
 
 - Variables
- ~RNNCell.weight_ih – the learnable input-hidden weights, of shape (hidden_size, input_size) 
- ~RNNCell.weight_hh – the learnable hidden-hidden weights, of shape (hidden_size, hidden_size) 
- ~RNNCell.bias_ih – the learnable input-hidden bias, of shape (hidden_size) 
- ~RNNCell.bias_hh – the learnable hidden-hidden bias, of shape (hidden_size) 
 
 - Note - All the weights and biases are initialized from where - Examples: - >>> rnn = nn.RNNCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): hx = rnn(input[i], hx) output.append(hx)