LocalResponseNorm¶
- 
class torch.nn.LocalResponseNorm(size, alpha=0.0001, beta=0.75, k=1.0)[source]¶
- Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels. - Parameters
- size – amount of neighbouring channels used for normalization 
- alpha – multiplicative factor. Default: 0.0001 
- beta – exponent. Default: 0.75 
- k – additive factor. Default: 1 
 
 - Shape:
- Input: 
- Output: (same shape as input) 
 
 - Examples: - >>> lrn = nn.LocalResponseNorm(2) >>> signal_2d = torch.randn(32, 5, 24, 24) >>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7) >>> output_2d = lrn(signal_2d) >>> output_4d = lrn(signal_4d)