GRUCell¶
- 
class torch.nn.GRUCell(input_size, hidden_size, bias=True)[source]¶
- A gated recurrent unit (GRU) cell - where is the sigmoid function, and is the Hadamard product. - Parameters
- input_size – The number of expected features in the input x 
- hidden_size – The number of features in the hidden state h 
- bias – If - False, then the layer does not use bias weights b_ih and b_hh. Default:- True
 
 - Inputs: input, hidden
- input of shape (batch, input_size): tensor containing input features 
- hidden of shape (batch, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. 
 
- Outputs: h’
- h’ of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch 
 
- Shape:
- Input1: tensor containing input features where = input_size 
- Input2: tensor containing the initial hidden state for each element in the batch where = hidden_size Defaults to zero if not provided. 
- Output: tensor containing the next hidden state for each element in the batch 
 
 - Variables
- ~GRUCell.weight_ih – the learnable input-hidden weights, of shape (3*hidden_size, input_size) 
- ~GRUCell.weight_hh – the learnable hidden-hidden weights, of shape (3*hidden_size, hidden_size) 
- ~GRUCell.bias_ih – the learnable input-hidden bias, of shape (3*hidden_size) 
- ~GRUCell.bias_hh – the learnable hidden-hidden bias, of shape (3*hidden_size) 
 
 - Note - All the weights and biases are initialized from where - Examples: - >>> rnn = nn.GRUCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): hx = rnn(input[i], hx) output.append(hx)