Shortcuts

ConstantPad3d

class torch.nn.ConstantPad3d(padding, value)[source]

Pads the input tensor boundaries with a constant value.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (padding_left\text{padding\_left} , padding_right\text{padding\_right} , padding_top\text{padding\_top} , padding_bottom\text{padding\_bottom} , padding_front\text{padding\_front} , padding_back\text{padding\_back} )

Shape:
  • Input: (N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in})

  • Output: (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out}) where

    Dout=Din+padding_front+padding_backD_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}

    Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

Examples:

>>> m = nn.ConstantPad3d(3, 3.5)
>>> input = torch.randn(16, 3, 10, 20, 30)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
>>> output = m(input)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources