AdaptiveMaxPool2d¶
- 
class torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)[source]¶
- Applies a 2D adaptive max pooling over an input signal composed of several input planes. - The output is of size H x W, for any input size. The number of output features is equal to the number of input planes. - Parameters
- output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a - int, or- Nonewhich means the size will be the same as that of the input.
- return_indices – if - True, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool2d. Default:- False
 
 - Examples - >>> # target output size of 5x7 >>> m = nn.AdaptiveMaxPool2d((5,7)) >>> input = torch.randn(1, 64, 8, 9) >>> output = m(input) >>> # target output size of 7x7 (square) >>> m = nn.AdaptiveMaxPool2d(7) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input) >>> # target output size of 10x7 >>> m = nn.AdaptiveMaxPool2d((None, 7)) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input)