torch.min¶
-
torch.
min
(input) → Tensor¶ Returns the minimum value of all elements in the
input
tensor.Warning
This function produces deterministic (sub)gradients unlike
min(dim=0)
- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750)
-
torch.
min
(input, dim, keepdim=False, *, out=None)¶
Returns a namedtuple
(values, indices)
wherevalues
is the minimum value of each row of theinput
tensor in the given dimensiondim
. Andindices
is the index location of each minimum value found (argmin).If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Note
If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned.
- Parameters
- Keyword Arguments
out (tuple, optional) – the tuple of two output tensors (min, min_indices)
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0]))
-
torch.
min
(input, other, *, out=None) → Tensor¶
See
torch.minimum()
.