torch.lu¶
-
torch.lu(*args, **kwargs)¶ Computes the LU factorization of a matrix or batches of matrices
A. Returns a tuple containing the LU factorization and pivots ofA. Pivoting is done ifpivotis set toTrue.Note
The pivots returned by the function are 1-indexed. If
pivotisFalse, then the returned pivots is a tensor filled with zeros of the appropriate size.Note
LU factorization with
pivot=Falseis not available for CPU, and attempting to do so will throw an error. However, LU factorization withpivot=Falseis available for CUDA.Note
This function does not check if the factorization was successful or not if
get_infosisTruesince the status of the factorization is present in the third element of the return tuple.Note
In the case of batches of square matrices with size less or equal to 32 on a CUDA device, the LU factorization is repeated for singular matrices due to the bug in the MAGMA library (see magma issue 13).
Note
L,U, andPcan be derived usingtorch.lu_unpack().Warning
The LU factorization does have backward support, but only for square inputs of full rank.
- Parameters
A (Tensor) – the tensor to factor of size
pivot (bool, optional) – controls whether pivoting is done. Default:
Trueget_infos (bool, optional) – if set to
True, returns an info IntTensor. Default:Falseout (tuple, optional) – optional output tuple. If
get_infosisTrue, then the elements in the tuple are Tensor, IntTensor, and IntTensor. Ifget_infosisFalse, then the elements in the tuple are Tensor, IntTensor. Default:None
- Returns
A tuple of tensors containing
factorization (Tensor): the factorization of size
pivots (IntTensor): the pivots of size .
pivotsstores all the intermediate transpositions of rows. The final permutationpermcould be reconstructed by applyingswap(perm[i], perm[pivots[i] - 1])fori = 0, ..., pivots.size(-1) - 1, wherepermis initially the identity permutation of elements (essentially this is whattorch.lu_unpack()is doing).infos (IntTensor, optional): if
get_infosisTrue, this is a tensor of size where non-zero values indicate whether factorization for the matrix or each minibatch has succeeded or failed
- Return type
(Tensor, IntTensor, IntTensor (optional))
Example:
>>> A = torch.randn(2, 3, 3) >>> A_LU, pivots = torch.lu(A) >>> A_LU tensor([[[ 1.3506, 2.5558, -0.0816], [ 0.1684, 1.1551, 0.1940], [ 0.1193, 0.6189, -0.5497]], [[ 0.4526, 1.2526, -0.3285], [-0.7988, 0.7175, -0.9701], [ 0.2634, -0.9255, -0.3459]]]) >>> pivots tensor([[ 3, 3, 3], [ 3, 3, 3]], dtype=torch.int32) >>> A_LU, pivots, info = torch.lu(A, get_infos=True) >>> if info.nonzero().size(0) == 0: ... print('LU factorization succeeded for all samples!') LU factorization succeeded for all samples!