Shortcuts

torch.logcumsumexp

torch.logcumsumexp(input, dim, *, out=None) → Tensor

Returns the logarithm of the cumulative summation of the exponentiation of elements of input in the dimension dim.

For summation index jj given by dim and other indices ii , the result is

logcumsumexp(x)ij=logj=0iexp(xij)\text{logcumsumexp}(x)_{ij} = \log \sum\limits_{j=0}^{i} \exp(x_{ij})
Parameters
  • input (Tensor) – the input tensor.

  • dim (int) – the dimension to do the operation over

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example::
>>> a = torch.randn(10)
>>> torch.logcumsumexp(a, dim=0)
tensor([-0.42296738, -0.04462666,  0.86278635,  0.94622083,  1.05277811,
         1.39202815,  1.83525007,  1.84492621,  2.06084887,  2.06844475]))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources