torch.kaiser_window¶
- 
torch.kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶
- Computes the Kaiser window with window length - window_lengthand shape parameter- beta.- Let I_0 be the zeroth order modified Bessel function of the first kind (see - torch.i0()) and- N = L - 1if- periodicis False and- Lif- periodicis True, where- Lis the- window_length. This function computes:- Calling - torch.kaiser_window(L, B, periodic=True)is equivalent to calling- torch.kaiser_window(L + 1, B, periodic=False)[:-1]). The- periodicargument is intended as a helpful shorthand to produce a periodic window as input to functions like- torch.stft().- Note - If - window_lengthis one, then the returned window is a single element tensor containing a one.- Parameters
- Keyword Arguments
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. Default: if- None, uses a global default (see- torch.set_default_tensor_type()).
- layout ( - torch.layout, optional) – the desired layout of returned window tensor. Only- torch.strided(dense layout) is supported.
- device ( - torch.device, optional) – the desired device of returned tensor. Default: if- None, uses the current device for the default tensor type (see- torch.set_default_tensor_type()).- devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: - False.