torch.bincount¶
- 
torch.bincount(input, weights=None, minlength=0) → Tensor¶
- Count the frequency of each value in an array of non-negative ints. - The number of bins (size 1) is one larger than the largest value in - inputunless- inputis empty, in which case the result is a tensor of size 0. If- minlengthis specified, the number of bins is at least- minlengthand if- inputis empty, then the result is tensor of size- minlengthfilled with zeros. If- nis the value at position- i,- out[n] += weights[i]if- weightsis specified else- out[n] += 1.- Note - This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information. - Parameters
- Returns
- a tensor of shape - Size([max(input) + 1])if- inputis non-empty, else- Size(0)
- Return type
- output (Tensor) 
 - Example: - >>> input = torch.randint(0, 8, (5,), dtype=torch.int64) >>> weights = torch.linspace(0, 1, steps=5) >>> input, weights (tensor([4, 3, 6, 3, 4]), tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) >>> torch.bincount(input) tensor([0, 0, 0, 2, 2, 0, 1]) >>> input.bincount(weights) tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])