Shortcuts

Source code for torch.quantization.qconfig

from collections import namedtuple
from .observer import *
from .fake_quantize import *
import torch.nn as nn

from typing import Union

[docs]class QConfig(namedtuple('QConfig', ['activation', 'weight'])): """ Describes how to quantize a layer or a part of the network by providing settings (observer classes) for activations and weights respectively. Note that QConfig needs to contain observer **classes** (like MinMaxObserver) or a callable that returns instances on invocation, not the concrete observer instances themselves. Quantization preparation function will instantiate observers multiple times for each of the layers. Observer classes have usually reasonable default arguments, but they can be overwritten with `with_args` method (that behaves like functools.partial): my_qconfig = QConfig(activation=MinMaxObserver.with_args(dtype=torch.qint8), weight=default_observer.with_args(dtype=torch.qint8)) """ def __new__(cls, activation, weight): # catch common mistakes if isinstance(activation, nn.Module) or isinstance(weight, nn.Module): raise ValueError("QConfig received observer instance, please pass observer class instead. " + "Use MyObserver.with_args(x=1) to override arguments to constructor if needed") return super(QConfig, cls).__new__(cls, activation, weight)
default_qconfig = QConfig(activation=default_observer, weight=default_weight_observer) default_debug_qconfig = QConfig(weight=default_weight_observer, activation=default_debug_observer) default_per_channel_qconfig = QConfig(activation=default_observer, weight=default_per_channel_weight_observer)
[docs]class QConfigDynamic(namedtuple('QConfigDynamic', ['activation', 'weight'])): """ Describes how to dynamically quantize a layer or a part of the network by providing settings (observer classes) for weights. It's like QConfig, but for dynamic quantization. Note that QConfigDynamic needs to contain observer **classes** (like MinMaxObserver) or a callable that returns instances on invocation, not the concrete observer instances themselves. Quantization function will instantiate observers multiple times for each of the layers. Observer classes have usually reasonable default arguments, but they can be overwritten with `with_args` method (that behaves like functools.partial): my_qconfig = QConfigDynamic(weight=default_observer.with_args(dtype=torch.qint8)) """ def __new__(cls, activation=torch.nn.Identity, weight=torch.nn.Identity): # catch common mistakes if isinstance(weight, nn.Module): raise ValueError("QConfigDynamic received observer instance, please pass observer class instead. " + "Use MyObserver.with_args(x=1) to override arguments to constructor if needed") return super(QConfigDynamic, cls).__new__(cls, activation, weight)
default_dynamic_qconfig = QConfigDynamic(activation=default_dynamic_quant_observer, weight=default_weight_observer) float16_dynamic_qconfig = QConfigDynamic(activation=PlaceholderObserver.with_args(dtype=torch.float16), weight=PlaceholderObserver.with_args(dtype=torch.float16)) per_channel_dynamic_qconfig = QConfigDynamic(activation=default_dynamic_quant_observer, weight=default_per_channel_weight_observer) # TODO: this is weight only quant, change this to QConfigWeightOnly # or remove the QConfigDynamic later float_qparams_weight_only_qconfig = QConfigDynamic( activation=default_placeholder_observer, weight=default_float_qparams_observer) default_qat_qconfig = QConfig(activation=default_fake_quant, weight=default_weight_fake_quant) default_weight_only_qconfig = QConfig(activation=torch.nn.Identity, weight=default_weight_fake_quant) default_activation_only_qconfig = QConfig(activation=default_fake_quant, weight=torch.nn.Identity) def get_default_qconfig(backend='fbgemm'): if backend == 'fbgemm': qconfig = QConfig(activation=HistogramObserver.with_args(reduce_range=True), weight=default_per_channel_weight_observer) elif backend == 'qnnpack': qconfig = QConfig(activation=HistogramObserver.with_args(reduce_range=False), weight=default_weight_observer) else: qconfig = default_qconfig return qconfig def get_default_qat_qconfig(backend='fbgemm'): # Histogram observer is too slow for quantization aware training if backend == 'fbgemm': qconfig = QConfig(activation=FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255, reduce_range=True), weight=default_per_channel_weight_fake_quant) elif backend == 'qnnpack': qconfig = QConfig(activation=FakeQuantize.with_args(observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255, reduce_range=False), weight=default_weight_fake_quant) else: qconfig = default_qat_qconfig return qconfig def assert_valid_qconfig(qconfig: Union[QConfig, QConfigDynamic], mod: torch.nn.Module) -> None: is_conv_transpose_mod = ( isinstance(mod, torch.nn.ConvTranspose1d) or isinstance(mod, torch.nn.ConvTranspose2d) or isinstance(mod, torch.nn.ConvTranspose3d)) if is_conv_transpose_mod: example_observer = qconfig.weight() is_per_channel = ( isinstance(example_observer, torch.quantization.PerChannelMinMaxObserver) or isinstance(example_observer, torch.quantization.MovingAveragePerChannelMinMaxObserver) ) assert not is_per_channel, \ 'Per channel weight observer is not supported yet for ConvTranspose{n}d.'

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources