Shortcuts

Source code for torch.profiler.profiler

import torch.autograd.profiler as prof
from torch.autograd import ProfilerActivity

from enum import Enum
from typing import Any, Callable, Iterable, Optional
from warnings import warn


class ProfilerAction(Enum):
    """
    Profiler actions that can be taken at the specified intervals
    """
    NONE = 0
    WARMUP = 1
    RECORD = 2
    RECORD_AND_SAVE = 3


[docs]def schedule(*, wait: int, warmup: int, active: int) -> Callable: """ Returns a callable that can be used as profiler ``schedule`` argument. The profiler will wait for ``wait`` steps, then do the warmup for the next ``warmup`` steps, then do the active recording for the next ``active`` steps and then repeat the cycle staring with the next step. """ def schedule_fn(step: int) -> ProfilerAction: assert step >= 0 num_steps = wait + warmup + active mod_step = step % num_steps if mod_step < wait: return ProfilerAction.NONE elif mod_step < wait + warmup: return ProfilerAction.WARMUP else: return ProfilerAction.RECORD if mod_step < num_steps - 1 \ else ProfilerAction.RECORD_AND_SAVE assert wait >= 0 and warmup >= 0 and active > 0, \ "Invalid profiler schedule arguments" if warmup == 0: warn("Profiler won't be using warmup, this can skew profiler results") return schedule_fn
def _default_schedule_fn(_: int) -> ProfilerAction: """ Default profiler behavior - immediately starts recording the events, keeps doing it on every profiler step. """ return ProfilerAction.RECORD
[docs]class profile(object): """ Profiler context manager. Args: - ``activities`` - list of activity groups (CPU, CUDA) to use in profiling, supported values: ``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA`` - ``schedule`` - callable that takes step (int) as a single parameter and returns ``ProfilerAction`` value that specifies the profiler action to perform at each step; - ``on_trace_ready`` - callable that is called at each step when ``schedule`` returns ``ProfilerAction.RECORD_AND_SAVE`` during the profiling; - ``record_shapes`` - save information about operator's input shapes; - ``profile_memory`` - track tensor memory allocation/deallocation; - ``with_stack`` - record source information (file and line number) for the ops. - ``use_gpu`` - (deprecated, use ``activities``). .. note:: Use ``torch.profiler.schedule`` to generate the callable schedule. Non-default schedules are useful when profiling long training jobs and allow the user to obtain multiple traces at the different iterations of the training process. The default schedule simply records all the events continuously for the duration of the context manager. .. note:: Enabling shape and stack tracing results in additional overhead. Examples: .. code-block:: python with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA] ) as p: code_to_profile() print(p.key_averages().table( sort_by="self_cuda_time_total", row_limit=-1)) Using the profiler's ``schedule``, ``on_trace_ready`` and ``step`` functions: .. code-block:: python # Non-default profiler schedule allows user to turn profiler on and off # on different iterations of the training loop; # trace_handler is called every time a new trace becomes available def trace_handler(prof): print(prof.key_averages().table( sort_by="self_cuda_time_total", row_limit=-1)) # prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) + ".json") with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], # In this example with wait=1, warmup=1, active=2, # profiler will skip the first step/iteration, # start warming up on the second, record # the third and the forth iterations, # after which the trace will become available # and on_trace_ready (when set) is called; # the cycle repeats starting with the next step schedule=torch.profiler.schedule( wait=1, warmup=1, active=2), on_trace_ready=trace_handler ) as p: for iter in range(N): code_iteration_to_profile(iter) # send a signal to the profiler that the next iteration has started p.step() """ def __init__( self, *, activities: Optional[Iterable[ProfilerActivity]] = None, schedule: Optional[Callable[[int], ProfilerAction]] = None, on_trace_ready: Optional[Callable[..., Any]] = None, record_shapes: bool = False, profile_memory: bool = False, with_stack: bool = False, # deprecated: use_gpu: Optional[bool] = None): if activities: self.activities = activities else: if use_gpu is not None: warn("use_gpu is deprecated, use activities argument instead") self.activities = set([ProfilerActivity.CPU]) if use_gpu: self.activities.add(ProfilerActivity.CUDA) else: raise RuntimeError("Profiler activities are not specified") if schedule: self.schedule = schedule # add step markers into the trace and table view self.record_steps = True else: self.schedule = _default_schedule_fn self.record_steps = False self.on_trace_ready = on_trace_ready self.record_shapes = record_shapes self.profile_memory = profile_memory self.with_stack = with_stack self.step_num = 0 self.current_action = self.schedule(self.step_num) self.profiler: Optional[prof.profile] = None self.step_rec_fn: Optional[prof.record_function] = None def __enter__(self): self._enter_actions() if self.record_steps: self.step_rec_fn = prof.record_function("ProfilerStep#" + str(self.step_num)) self.step_rec_fn.__enter__() return self def __exit__(self, exc_type, exc_val, exc_tb): if self.record_steps and self.step_rec_fn: self.step_rec_fn.__exit__(None, None, None) self._exit_actions()
[docs] def step(self): """ Signals the profiler that the next profiling step has started. """ if self.record_steps and self.step_rec_fn: self.step_rec_fn.__exit__(None, None, None) prev_action = self.current_action self.step_num += 1 self.current_action = self.schedule(self.step_num) if self.current_action == ProfilerAction.NONE: if prev_action == ProfilerAction.NONE: pass elif prev_action == ProfilerAction.WARMUP: warn("Incorrect schedule: WARMUP followed by NONE") self._start_trace() self._stop_trace() elif prev_action == ProfilerAction.RECORD: warn("Incorrect schedule: RECORD followed by NONE") self._stop_trace() else: assert prev_action == ProfilerAction.RECORD_AND_SAVE self._stop_trace() if self.on_trace_ready: self.on_trace_ready(self) elif self.current_action == ProfilerAction.WARMUP: if prev_action == ProfilerAction.NONE: self._start_warmup() elif prev_action == ProfilerAction.WARMUP: pass elif prev_action == ProfilerAction.RECORD: warn("Incorrect schedule: RECORD followed by WARMUP") self._stop_trace() else: assert prev_action == ProfilerAction.RECORD_AND_SAVE self._stop_trace() if self.on_trace_ready: self.on_trace_ready(self) self._start_warmup() elif self.current_action in \ [ProfilerAction.RECORD, ProfilerAction.RECORD_AND_SAVE]: if prev_action == ProfilerAction.NONE: self._start_warmup() self._start_trace() elif prev_action == ProfilerAction.WARMUP: self._start_trace() elif prev_action == ProfilerAction.RECORD: pass else: assert prev_action == ProfilerAction.RECORD_AND_SAVE self._stop_trace() if self.on_trace_ready: self.on_trace_ready(self) self._start_warmup() self._start_trace() if self.record_steps: self.step_rec_fn = prof.record_function("ProfilerStep#" + str(self.step_num)) self.step_rec_fn.__enter__()
[docs] def export_chrome_trace(self, path: str): """ Exports the collected trace in Chrome JSON format. """ assert self.profiler return self.profiler.export_chrome_trace(path)
[docs] def export_stacks(self, path: str, metric: str = "self_cpu_time_total"): """ Save stack traces in a file in a format suitable for visualization. Args: - ``path`` - save stacks file to this location; - ``metric`` - metric to use: "self_cpu_time_total" or "self_cuda_time_total" .. note:: Example of using FlameGraph tool: - git clone https://github.com/brendangregg/FlameGraph - cd FlameGraph - ./flamegraph.pl --title "CPU time" --countname "us." profiler.stacks > perf_viz.svg """ assert self.profiler return self.profiler.export_stacks(path, metric)
[docs] def key_averages(self, group_by_input_shape: bool = False, group_by_stack_n: int = 0): """ Averages events, grouping them by operator name and (optionally) input shapes and stack. Note: to use shape/stack functionality make sure to set record_shapes/with_stack when creating profiler context manager. """ assert self.profiler return self.profiler.key_averages(group_by_input_shape, group_by_stack_n)
[docs] def events(self): """ Returns the list of unaggregated profiler events, to be used in the trace callback or after the profiling is finished """ assert self.profiler return self.profiler.function_events
def _enter_actions(self): if self.current_action == ProfilerAction.WARMUP: self._start_warmup() elif self.current_action in \ [ProfilerAction.RECORD, ProfilerAction.RECORD_AND_SAVE]: self._start_warmup() self._start_trace() def _exit_actions(self): if self.current_action == ProfilerAction.WARMUP: self._start_trace() self._stop_trace() elif self.current_action in \ [ProfilerAction.RECORD, ProfilerAction.RECORD_AND_SAVE]: self._stop_trace() if self.on_trace_ready: self.on_trace_ready(self) def _start_warmup(self): self.profiler = prof.profile( use_cuda=(ProfilerActivity.CUDA in self.activities), use_cpu=(ProfilerActivity.CPU in self.activities), record_shapes=self.record_shapes, profile_memory=self.profile_memory, with_stack=self.with_stack, use_kineto=True, ) self.profiler._prepare_kineto_trace() def _start_trace(self): assert self.profiler is not None self.profiler._start_kineto_trace() def _stop_trace(self): assert self.profiler is not None self.profiler.__exit__(None, None, None)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources