Source code for torch.fx.node
# Nodes represent a definition of a value in our graph of operators.
from typing import TYPE_CHECKING, Union, Callable, Any, Tuple, List, Optional, Dict
from .immutable_collections import immutable_dict, immutable_list
import torch
if TYPE_CHECKING:
from .graph import Graph
BaseArgumentTypes = Union[str, int, float, bool, torch.dtype, torch.Tensor]
base_types = BaseArgumentTypes.__args__ # type: ignore
Target = Union[Callable[..., Any], str]
Argument = Optional[Union[
Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
List[Any], # actually Argument
Dict[str, Any], # actually Argument
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
'Node',
BaseArgumentTypes
]]
[docs]class Node:
"""
``Node`` is the data structure that represents individual operations within
a ``Graph``. For the most part, Nodes represent callsites to various entities,
such as operators, methods, and Modules (some exceptions include nodes that
specify function inputs and outputs). Each ``Node`` has a function specified
by its ``op`` property. The ``Node`` semantics for each value of ``op`` are as follows:
- ``placeholder`` represents a function input. The ``name`` attribute specifies the name this value will take on.
``target`` is similarly the name of the argument. ``args`` holds either: 1) nothing, or 2) a single argument
denoting the default parameter of the function input. ``kwargs`` is don't-care. Placeholders correspond to
the function parameters (e.g. ``x``) in the graph printout.
- ``get_attr`` retrieves a parameter from the module hierarchy. ``name`` is similarly the name the result of the
fetch is assigned to. ``target`` is the fully-qualified name of the parameter's position in the module hierarchy.
``args`` and ``kwargs`` are don't-care
- ``call_function`` applies a free function to some values. ``name`` is similarly the name of the value to assign
to. ``target`` is the function to be applied. ``args`` and ``kwargs`` represent the arguments to the function,
following the Python calling convention
- ``call_module`` applies a module in the module hierarchy's ``forward()`` method to given arguments. ``name`` is
as previous. ``target`` is the fully-qualified name of the module in the module hierarchy to call.
``args`` and ``kwargs`` represent the arguments to invoke the module on, *including the self argument*.
- ``call_method`` calls a method on a value. ``name`` is as similar. ``target`` is the string name of the method
to apply to the ``self`` argument. ``args`` and ``kwargs`` represent the arguments to invoke the module on,
*including the self argument*
- ``output`` contains the output of the traced function in its ``args[0]`` attribute. This corresponds to the "return" statement
in the Graph printout.
"""
def __init__(self, graph: 'Graph', name: str, op: str, target: 'Target',
args: Tuple['Argument', ...], kwargs: Dict[str, 'Argument'],
type : Optional[Any] = None) -> None:
self.graph = graph
self.name = name # unique name of value being created
assert op in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output', 'root']
self.op = op # the kind of operation = placeholder|call_method|call_module|call_function|get_attr
if op in ['call_method', 'call_module']:
assert isinstance(target, str)
self.target = target # for method/module/function, the name of the method/module/function/attr
# being invoked, e.g add, layer1, or torch.add
# All `Node`-valued inputs. Key is the Node, value is don't-care.
# The public API for this is `all_input_nodes`, this private attribute
# should not be accessed directly.
self._input_nodes : Dict[Node, None] = {}
self.__update_args_kwargs(map_arg(args, lambda x: x), map_arg(kwargs, lambda x: x)) # type: ignore
# All of the nodes that use the value produced by this Node
# Note one user may correspond to several uses, e.g. the node fo ``x + x``
# would appear once here, but represents two uses.
#
# Is a dict to act as an "ordered set". Keys are significant, value dont-care
self.users : Dict['Node', None] = {}
# Type expression representing the output value of this node.
# This should contain the same class of Type objects that would appear
# as type annotations for function inputs/outputs.
#
# For placeholder nodes, this value will be used to type-annotate the
# generated function parameters.
# For the return ndoe, this value will be used to type-annotate the
# generated function return type. (Note this is a special case. ``return``
# does not produce a value, it's more of a notation. Thus, this value
# describes the type of args[0] in the ``return`` node.
self.type : Optional[Any] = type
self._prev = self
self._next = self
self._erased = False
@property
def next(self) -> 'Node':
"""
Returns the next ``Node`` in the linked list of Nodes.
Returns:
The next ``Node`` in the linked list of Nodes.
"""
return self._next
@property
def prev(self) -> 'Node':
"""
Returns the previous ``Node`` in the linked list of Nodes.
Returns:
The previous ``Node`` in the linked list of Nodes.
"""
return self._prev
[docs] def prepend(self, x: 'Node') -> None:
"""
Insert x before this node in the list of nodes in the graph. Example::
Before: p -> self
bx -> x -> ax
After: p -> x -> self
bx -> ax
Args:
x (Node): The node to put before this node. Must be a member of the same graph.
"""
assert self.graph == x.graph, "Attempting to move a Node into a different Graph"
x._remove_from_list()
p = self._prev
p._next, x._prev = x, p
x._next, self._prev = self, x
[docs] def append(self, x: 'Node') -> None:
"""
Insert x after this node in the list of nodes in the graph.
Equvalent to ``self.next.prepend(x)``
Args:
x (Node): The node to put after this node. Must be a member of the same graph.
"""
self._next.prepend(x)
def _remove_from_list(self):
p, n = self._prev, self._next
p._next, n._prev = n, p
@property
def args(self) -> Tuple[Argument, ...]:
"""
The tuple of arguments to this ``Node``. The interpretation of arguments
depends on the node's opcode. See the :class:`Node` docstring for more
information.
Assignment to this property is allowed. All accounting of uses and users
is updated automatically on assignment.
"""
return self._args
@args.setter
def args(self, a : Tuple[Argument, ...]):
"""
Set the tuple of arguments to this Node. The interpretation of arguments
depends on the node's opcode. See the ``fx.Graph`` docstring for more
information.
"""
# DO NOT CALL `__update_args_kwargs` directly. The correct way to
# set `args` is via direct assignment, i.e. `node.args = new_args`
self.__update_args_kwargs(map_arg(a, lambda x: x), self._kwargs) # type: ignore
@property
def kwargs(self) -> Dict[str, Argument]:
"""
The dict of keyword arguments to this ``Node``. The interpretation of arguments
depends on the node's opcode. See the :class:`Node` docstring for more
information.
Assignment to this property is allowed. All accounting of uses and users
is updated automatically on assignment.
"""
return self._kwargs
@kwargs.setter
def kwargs(self, k : Dict[str, Argument]):
"""
Set the dict of kwargs to this Node. The interpretation of arguments
depends on the node's opcode. See the ``fx.Graph`` docstring for more
information.
"""
# DO NOT CALL `__update_args_kwargs` directly. The correct way to
# set `args` is via direct assignment, i.e. `node.kwargs = new_kwargs`
self.__update_args_kwargs(self._args, map_arg(k, lambda x: x)) # type: ignore
@property
def all_input_nodes(self) -> List['Node']:
"""
Return all Nodes that are inputs to this Node. This is equivalent to
iterating over ``args`` and ``kwargs`` and only collecting the values that
are Nodes.
Returns:
List of ``Nodes`` that appear in the ``args`` and ``kwargs`` of this
``Node``, in that order.
"""
return list(self._input_nodes.keys())
def __update_args_kwargs(self, new_args : Tuple['Argument', ...], new_kwargs : Dict[str, 'Argument']):
"""
This API is internal. Do *not* call it directly.
"""
self._args = new_args
self._kwargs = new_kwargs
for old_use in self._input_nodes.keys():
old_use.users.pop(self)
self._input_nodes = {}
map_arg(self._args, lambda n: self._input_nodes.setdefault(n))
map_arg(self._kwargs, lambda n: self._input_nodes.setdefault(n))
for new_use in self._input_nodes.keys():
new_use.users.setdefault(self)
def __repr__(self) -> str:
return self.name
[docs] def replace_all_uses_with(self, replace_with : 'Node') -> List['Node']:
"""
Replace all uses of ``self`` in the Graph with the Node ``replace_with``.
Args:
replace_with (Node): The node to replace all uses of ``self`` with.
Returns:
The list of Nodes on which this change was made.
"""
to_process = list(self.users)
for use_node in to_process:
def maybe_replace_node(n : Node) -> Node:
if n == self:
return replace_with
else:
return n
new_args = map_arg(use_node.args, maybe_replace_node)
new_kwargs = map_arg(use_node.kwargs, maybe_replace_node)
assert isinstance(new_args, tuple)
assert isinstance(new_kwargs, dict)
use_node.__update_args_kwargs(new_args, new_kwargs)
assert len(self.users) == 0
return to_process
def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument:
""" Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """
return map_aggregate(a, lambda x: fn(x) if isinstance(x, Node) else x)
def map_aggregate(a: Argument, fn: Callable[[Argument], Argument]) -> Argument:
""" Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """
if isinstance(a, tuple):
return tuple(map_aggregate(elem, fn) for elem in a)
elif isinstance(a, list):
return immutable_list(map_aggregate(elem, fn) for elem in a)
elif isinstance(a, dict):
return immutable_dict((k, map_aggregate(v, fn)) for k, v in a.items())
elif isinstance(a, slice):
return slice(map_aggregate(a.start, fn), map_aggregate(a.stop, fn), map_aggregate(a.step, fn))
else:
return fn(a)