Shortcuts

Source code for torch.fx.node

# Nodes represent a definition of a value in our graph of operators.
from typing import TYPE_CHECKING, Union, Callable, Any, Tuple, List, Optional, Dict
from .immutable_collections import immutable_dict, immutable_list
import torch

if TYPE_CHECKING:
    from .graph import Graph

BaseArgumentTypes = Union[str, int, float, bool, torch.dtype, torch.Tensor]
base_types = BaseArgumentTypes.__args__  # type: ignore

Target = Union[Callable[..., Any], str]

Argument = Optional[Union[
    Tuple[Any, ...],  # actually Argument, but mypy can't represent recursive types
    List[Any],  # actually Argument
    Dict[str, Any],  # actually Argument
    slice,  # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
    'Node',
    BaseArgumentTypes
]]

[docs]class Node: """ ``Node`` is the data structure that represents individual operations within a ``Graph``. For the most part, Nodes represent callsites to various entities, such as operators, methods, and Modules (some exceptions include nodes that specify function inputs and outputs). Each ``Node`` has a function specified by its ``op`` property. The ``Node`` semantics for each value of ``op`` are as follows: - ``placeholder`` represents a function input. The ``name`` attribute specifies the name this value will take on. ``target`` is similarly the name of the argument. ``args`` holds either: 1) nothing, or 2) a single argument denoting the default parameter of the function input. ``kwargs`` is don't-care. Placeholders correspond to the function parameters (e.g. ``x``) in the graph printout. - ``get_attr`` retrieves a parameter from the module hierarchy. ``name`` is similarly the name the result of the fetch is assigned to. ``target`` is the fully-qualified name of the parameter's position in the module hierarchy. ``args`` and ``kwargs`` are don't-care - ``call_function`` applies a free function to some values. ``name`` is similarly the name of the value to assign to. ``target`` is the function to be applied. ``args`` and ``kwargs`` represent the arguments to the function, following the Python calling convention - ``call_module`` applies a module in the module hierarchy's ``forward()`` method to given arguments. ``name`` is as previous. ``target`` is the fully-qualified name of the module in the module hierarchy to call. ``args`` and ``kwargs`` represent the arguments to invoke the module on, *including the self argument*. - ``call_method`` calls a method on a value. ``name`` is as similar. ``target`` is the string name of the method to apply to the ``self`` argument. ``args`` and ``kwargs`` represent the arguments to invoke the module on, *including the self argument* - ``output`` contains the output of the traced function in its ``args[0]`` attribute. This corresponds to the "return" statement in the Graph printout. """ def __init__(self, graph: 'Graph', name: str, op: str, target: 'Target', args: Tuple['Argument', ...], kwargs: Dict[str, 'Argument'], type : Optional[Any] = None) -> None: self.graph = graph self.name = name # unique name of value being created assert op in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output', 'root'] self.op = op # the kind of operation = placeholder|call_method|call_module|call_function|get_attr if op in ['call_method', 'call_module']: assert isinstance(target, str) self.target = target # for method/module/function, the name of the method/module/function/attr # being invoked, e.g add, layer1, or torch.add # All `Node`-valued inputs. Key is the Node, value is don't-care. # The public API for this is `all_input_nodes`, this private attribute # should not be accessed directly. self._input_nodes : Dict[Node, None] = {} self.__update_args_kwargs(map_arg(args, lambda x: x), map_arg(kwargs, lambda x: x)) # type: ignore # All of the nodes that use the value produced by this Node # Note one user may correspond to several uses, e.g. the node fo ``x + x`` # would appear once here, but represents two uses. # # Is a dict to act as an "ordered set". Keys are significant, value dont-care self.users : Dict['Node', None] = {} # Type expression representing the output value of this node. # This should contain the same class of Type objects that would appear # as type annotations for function inputs/outputs. # # For placeholder nodes, this value will be used to type-annotate the # generated function parameters. # For the return ndoe, this value will be used to type-annotate the # generated function return type. (Note this is a special case. ``return`` # does not produce a value, it's more of a notation. Thus, this value # describes the type of args[0] in the ``return`` node. self.type : Optional[Any] = type self._prev = self self._next = self self._erased = False @property def next(self) -> 'Node': """ Returns the next ``Node`` in the linked list of Nodes. Returns: The next ``Node`` in the linked list of Nodes. """ return self._next @property def prev(self) -> 'Node': """ Returns the previous ``Node`` in the linked list of Nodes. Returns: The previous ``Node`` in the linked list of Nodes. """ return self._prev
[docs] def prepend(self, x: 'Node') -> None: """ Insert x before this node in the list of nodes in the graph. Example:: Before: p -> self bx -> x -> ax After: p -> x -> self bx -> ax Args: x (Node): The node to put before this node. Must be a member of the same graph. """ assert self.graph == x.graph, "Attempting to move a Node into a different Graph" x._remove_from_list() p = self._prev p._next, x._prev = x, p x._next, self._prev = self, x
[docs] def append(self, x: 'Node') -> None: """ Insert x after this node in the list of nodes in the graph. Equvalent to ``self.next.prepend(x)`` Args: x (Node): The node to put after this node. Must be a member of the same graph. """ self._next.prepend(x)
def _remove_from_list(self): p, n = self._prev, self._next p._next, n._prev = n, p @property def args(self) -> Tuple[Argument, ...]: """ The tuple of arguments to this ``Node``. The interpretation of arguments depends on the node's opcode. See the :class:`Node` docstring for more information. Assignment to this property is allowed. All accounting of uses and users is updated automatically on assignment. """ return self._args @args.setter def args(self, a : Tuple[Argument, ...]): """ Set the tuple of arguments to this Node. The interpretation of arguments depends on the node's opcode. See the ``fx.Graph`` docstring for more information. """ # DO NOT CALL `__update_args_kwargs` directly. The correct way to # set `args` is via direct assignment, i.e. `node.args = new_args` self.__update_args_kwargs(map_arg(a, lambda x: x), self._kwargs) # type: ignore @property def kwargs(self) -> Dict[str, Argument]: """ The dict of keyword arguments to this ``Node``. The interpretation of arguments depends on the node's opcode. See the :class:`Node` docstring for more information. Assignment to this property is allowed. All accounting of uses and users is updated automatically on assignment. """ return self._kwargs @kwargs.setter def kwargs(self, k : Dict[str, Argument]): """ Set the dict of kwargs to this Node. The interpretation of arguments depends on the node's opcode. See the ``fx.Graph`` docstring for more information. """ # DO NOT CALL `__update_args_kwargs` directly. The correct way to # set `args` is via direct assignment, i.e. `node.kwargs = new_kwargs` self.__update_args_kwargs(self._args, map_arg(k, lambda x: x)) # type: ignore @property def all_input_nodes(self) -> List['Node']: """ Return all Nodes that are inputs to this Node. This is equivalent to iterating over ``args`` and ``kwargs`` and only collecting the values that are Nodes. Returns: List of ``Nodes`` that appear in the ``args`` and ``kwargs`` of this ``Node``, in that order. """ return list(self._input_nodes.keys()) def __update_args_kwargs(self, new_args : Tuple['Argument', ...], new_kwargs : Dict[str, 'Argument']): """ This API is internal. Do *not* call it directly. """ self._args = new_args self._kwargs = new_kwargs for old_use in self._input_nodes.keys(): old_use.users.pop(self) self._input_nodes = {} map_arg(self._args, lambda n: self._input_nodes.setdefault(n)) map_arg(self._kwargs, lambda n: self._input_nodes.setdefault(n)) for new_use in self._input_nodes.keys(): new_use.users.setdefault(self) def __repr__(self) -> str: return self.name
[docs] def replace_all_uses_with(self, replace_with : 'Node') -> List['Node']: """ Replace all uses of ``self`` in the Graph with the Node ``replace_with``. Args: replace_with (Node): The node to replace all uses of ``self`` with. Returns: The list of Nodes on which this change was made. """ to_process = list(self.users) for use_node in to_process: def maybe_replace_node(n : Node) -> Node: if n == self: return replace_with else: return n new_args = map_arg(use_node.args, maybe_replace_node) new_kwargs = map_arg(use_node.kwargs, maybe_replace_node) assert isinstance(new_args, tuple) assert isinstance(new_kwargs, dict) use_node.__update_args_kwargs(new_args, new_kwargs) assert len(self.users) == 0 return to_process
def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument: """ Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """ return map_aggregate(a, lambda x: fn(x) if isinstance(x, Node) else x) def map_aggregate(a: Argument, fn: Callable[[Argument], Argument]) -> Argument: """ Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """ if isinstance(a, tuple): return tuple(map_aggregate(elem, fn) for elem in a) elif isinstance(a, list): return immutable_list(map_aggregate(elem, fn) for elem in a) elif isinstance(a, dict): return immutable_dict((k, map_aggregate(v, fn)) for k, v in a.items()) elif isinstance(a, slice): return slice(map_aggregate(a.start, fn), map_aggregate(a.stop, fn), map_aggregate(a.step, fn)) else: return fn(a)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources